हिंदी

Prove the Following Trigonometric Identities. (1 - Cos Theta)/Sin Theta = Sin Theta/(1 + Cos Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`

उत्तर

We have to prove `(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`

We know that, `sin^2 theta + cos^2 theta = 1`

Multiplying both numerator and denominator by `(1 + cos theta)`, we have

`(1 - cos theta)/sin theta = ((1 - cos theta)(1 + cos theta))/(sin theta(1 + cos theta))`

`= (1 - cos^2 theta)/(sin theta(1 + cos theta))`

` = (sin^2 theta)/(sin theta(1 + cos theta))`

`= sin theta/(1 + cos theta)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 12 | पृष्ठ ४३

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If `sec theta + tan theta = x,"  find the value of " sec theta`


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×