Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
उत्तर
We have to prove `(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and denominator by `(1 + cos theta)`, we have
`(1 - cos theta)/sin theta = ((1 - cos theta)(1 + cos theta))/(sin theta(1 + cos theta))`
`= (1 - cos^2 theta)/(sin theta(1 + cos theta))`
` = (sin^2 theta)/(sin theta(1 + cos theta))`
`= sin theta/(1 + cos theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If `sec theta + tan theta = x," find the value of " sec theta`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.