Advertisements
Advertisements
प्रश्न
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
उत्तर
LHS = sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ )
= sec θ. sec θ - tan θ. tan θ
= sec2θ - tan2θ
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If 2sin2θ – cos2θ = 2, then find the value of θ.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ