Advertisements
Advertisements
प्रश्न
If 2sin2θ – cos2θ = 2, then find the value of θ.
उत्तर
Given,
2sin2θ – cos2θ = 2
⇒ 2sin2θ – (1 – sin2θ) = 2 ...[∵ sin2θ + cos2θ = 1]
⇒ 2sin2θ + sin2θ – 1 = 2
⇒ 3sin2θ = 3
⇒ sin2θ = 1
⇒ sinθ = 1 = sin 90° ...[∵ sin 90° = 1]
∴ θ = 90°
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
If x = a tan θ and y = b sec θ then
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`