हिंदी

5sin2θ-5cot2θ, complete the activity given below. Activity: 5sin2θ-5cot2θ = □(1sin2θ-cot2θ) = 5(□-cot2θ) ......[1sin2θ=□] = 5(1) = □ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`

रिक्त स्थान भरें
योग

उत्तर

`5/(sin^2theta) - 5cot^2theta`

= `5 (1/(sin^2theta) - cot^2theta)`

= `5("cosec"^2theta - cot^2theta)   ......[1/(sin^2theta) = "cosec"^2theta]`

= 5(1)

= 5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.2 (A)

संबंधित प्रश्न

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Choose the correct alternative:

sec2θ – tan2θ =?


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×