Advertisements
Advertisements
प्रश्न
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
उत्तर
`a^2/x^2 - b^2/y^2`
= `a^2/(a^2cos^2theta) - b^2/(b^2cot^2theta)`
= `1/cos^2theta - sin^2theta/cos^2theta`
= `(1 - sin^2theta)/cos^2theta`
= `cos^2theta/cos^2theta`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Find A if tan 2A = cot (A-24°).
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`