Advertisements
Advertisements
प्रश्न
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
उत्तर
`a^2/x^2 - b^2/y^2`
= `a^2/(a^2cos^2theta) - b^2/(b^2cot^2theta)`
= `1/cos^2theta - sin^2theta/cos^2theta`
= `(1 - sin^2theta)/cos^2theta`
= `cos^2theta/cos^2theta`
= 1
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Evaluate sin25° cos65° + cos25° sin65°
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`