Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
उत्तर
`(1 - cos^2θ)sec^2θ = tan^2θ`
Consider L.H.S = `sin^2θ1/cos^2θ`
= `tan^2θ` = RHS
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Choose the correct alternative:
cos θ. sec θ = ?