Advertisements
Advertisements
प्रश्न
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
उत्तर
`"LHS" = sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ))`
Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get,
`"LHS" = sqrt((1 + sin θ)/(1 - sin θ) × (1 + sin θ)/(1 + sin θ)) + sqrt((1 - sin θ)/(1 + sin θ) × (1 - sin θ)/(1 - sin θ))`
`"LHS" = sqrt((1 + sin θ)^2/(1 - sin^2 θ)) + sqrt((1 - sin θ)^2/(1 - sin^2 θ))`
`"LHS" = sqrt((1 + sin^2θ)/(1 - sin^2 θ)) + sqrt((1 - sin^2θ)/(1 - sin^2 θ))`
`"LHS" = sqrt((1 + sin^2θ)/(cos^2 θ)) + sqrt((1 - sin^2θ)/(cos^2 θ))`
`"LHS" = (1 + sin θ)/(cos θ) + (1 - sin θ)/(cos θ)`
`"LHS" = (1 + cancel(sin θ) + 1 -cancel(sin θ))/(cos θ)`
LHS = `2/(cos θ)`
LHS = 2. `1/(cos θ)`
LHS = 2. sec θ
RHS = 2. sec θ
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`