Advertisements
Advertisements
प्रश्न
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
उत्तर
`"LHS" = sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ))`
Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get,
`"LHS" = sqrt((1 + sin θ)/(1 - sin θ) × (1 + sin θ)/(1 + sin θ)) + sqrt((1 - sin θ)/(1 + sin θ) × (1 - sin θ)/(1 - sin θ))`
`"LHS" = sqrt((1 + sin θ)^2/(1 - sin^2 θ)) + sqrt((1 - sin θ)^2/(1 - sin^2 θ))`
`"LHS" = sqrt((1 + sin^2θ)/(1 - sin^2 θ)) + sqrt((1 - sin^2θ)/(1 - sin^2 θ))`
`"LHS" = sqrt((1 + sin^2θ)/(cos^2 θ)) + sqrt((1 - sin^2θ)/(cos^2 θ))`
`"LHS" = (1 + sin θ)/(cos θ) + (1 - sin θ)/(cos θ)`
`"LHS" = (1 + cancel(sin θ) + 1 -cancel(sin θ))/(cos θ)`
LHS = `2/(cos θ)`
LHS = 2. `1/(cos θ)`
LHS = 2. sec θ
RHS = 2. sec θ
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
If sin θ = `1/2`, then find the value of θ.
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Choose the correct alternative:
1 + cot2θ = ?
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
sin(45° + θ) – cos(45° – θ) is equal to ______.