हिंदी

Prove that θθθθθ1+sinθ1-sinθ+1-sinθ1+sinθ=2secθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`

योग

उत्तर

`"LHS" = sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ))`

Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get,

`"LHS" = sqrt((1 + sin θ)/(1 - sin θ) × (1 + sin θ)/(1 + sin θ)) + sqrt((1 - sin θ)/(1 + sin θ) × (1 - sin θ)/(1 - sin θ))`

`"LHS" = sqrt((1 + sin θ)^2/(1 - sin^2 θ)) + sqrt((1 - sin θ)^2/(1 - sin^2 θ))`

`"LHS" = sqrt((1 + sin^2θ)/(1 - sin^2 θ)) + sqrt((1 - sin^2θ)/(1 - sin^2 θ))`

`"LHS" = sqrt((1 + sin^2θ)/(cos^2 θ)) + sqrt((1 - sin^2θ)/(cos^2 θ))`

`"LHS" = (1 + sin θ)/(cos θ) + (1 - sin θ)/(cos θ)`

`"LHS" = (1 + cancel(sin θ) + 1 -cancel(sin θ))/(cos θ)`

LHS = `2/(cos θ)`

LHS = 2. `1/(cos θ)`

LHS = 2. sec θ

RHS = 2. sec θ

LHS = RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 83.2 | पृष्ठ ४७

संबंधित प्रश्न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


If sin θ = `1/2`, then find the value of θ. 


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Choose the correct alternative:

1 + cot2θ = ? 


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


sin(45° + θ) – cos(45° – θ) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×