Advertisements
Advertisements
प्रश्न
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
उत्तर
LHS = `sqrt((1/cos theta - 1)/(1/cos theta + 1)) + sqrt((1/cos theta +1)/(1/cos theta - 1))`
`= sqrt(((1 - cos theta)/cos theta)/((1+ cos theta)/cos theta)) + sqrt(((1 + cos theta)/cos theta)/((1 - cos theta)/cos theta)`
`= sqrt((1 - cos theta)/(1 + cos theta)) +sqrt((1 - cos theta)/(1 - cos theta))`
`= sqrt((1 - cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta)) + sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta))`
`= sqrt((1 - cos theta)^2/(1 - cos^2 theta)) + sqrt((1 + cos theta)^2/(1 - cos^2 theta))`
`=(1 - cos theta)/sin theta + (1 + cos theta)/sin theta`
`= (1 - cos theta + 1 + cos theta)/sin theta`
`= 2/sin theta`
= 2 cosec
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
(i)` (1-cos^2 theta )cosec^2theta = 1`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
sin(45° + θ) – cos(45° – θ) is equal to ______.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`