हिंदी

Prove That: Sqrt((Sec Theta - 1)/(Sec Theta + 1)) + Sqrt((Sec Theta + 1)/(Sec Theta - 1)) = 2 Cosec Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`

उत्तर

LHS = `sqrt((1/cos theta - 1)/(1/cos theta + 1)) + sqrt((1/cos theta +1)/(1/cos theta - 1))`

`= sqrt(((1 - cos theta)/cos theta)/((1+ cos theta)/cos theta)) + sqrt(((1 + cos theta)/cos theta)/((1 - cos theta)/cos theta)`

`= sqrt((1 - cos theta)/(1 + cos theta)) +sqrt((1 - cos theta)/(1 - cos theta))`

`= sqrt((1 - cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta)) + sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta))`

`= sqrt((1 - cos theta)^2/(1 - cos^2 theta)) + sqrt((1 + cos theta)^2/(1 - cos^2 theta))`

`=(1 - cos theta)/sin theta + (1 + cos theta)/sin theta`

`= (1 - cos theta + 1 + cos theta)/sin theta`

`= 2/sin theta`

= 2 cosec

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 83.1 | पृष्ठ ४७

संबंधित प्रश्न

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


(i)` (1-cos^2 theta )cosec^2theta = 1`


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


sin(45° + θ) – cos(45° – θ) is equal to ______.


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×