Advertisements
Advertisements
प्रश्न
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
उत्तर
Given:
x = 3cosecθ + 4cotθ .....(1)
y = 4cosecθ – 3cotθ .....(2)
Multiplying (1) by 4 and (2) by 3, we get
4x = 12cosecθ + 16cotθ .....(3)
3y = 12cosecθ – 9cotθ .....(4)
Subtracting (4) from (3), we get
4x − 3y = 25cot θ
⇒ cot2θ = \[\left( \frac{4x - 3y}{25} \right)^2\] .....(5)
Multiplying (1) by 3 and (2) by 4, we get
3x = 9cosecθ + 12cotθ .....(6)
4y = 16cosecθ – 12cotθ .....(7)
Adding (6) and (7), we get
3x + 4y = 25cosecθ
⇒ cosecθ = \[\frac{3x + 4y}{25}\]
⇒ cosec2θ = \[\left(\frac{3x + 4y}{25}\right)^2\] .....(8)
\[{cosec}^2 \theta - \cot^2 \theta = \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]
\[ \Rightarrow \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]
\[ \Rightarrow \frac{1}{{25}^2}\left[ \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 \right] = 1\]
\[ \Rightarrow \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 = 625\]
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`sin^2 theta + 1/((1+tan^2 theta))=1`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.