рд╣рд┐рдВрджреА

If `( Cosec Theta + Cot Theta ) =M and ( Cosec Theta - Cot Theta ) = N, ` Show that Mn = 1. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.

рдЙрддреНрддрд░

We have `(cosec  theta + cot theta ) = m      ............(i)`

Again ,`( cosec theta - cot theta )=n                 ............(ii)`

ЁЭСБЁЭСЬЁЭСд, ЁЭСЪЁЭСвЁЭСЩЁЭСбЁЭСЦЁЭСЭЁЭСЩЁЭСжЁЭСЦЁЭСЫЁЭСФ (ЁЭСЦ)ЁЭСОЁЭСЫЁЭСС (ЁЭСЦЁЭСЦ), ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:

`(cosec theta + cot theta ) xx ( cosec theta - cot theta ) = mn`

= >`cosec  ^2 theta - cot^2  theta =mn`

= >1= mn     `[тИ╡ cosec ^2 theta - cot^2 theta =1]`

∴  mn =1

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 2

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 2 | Q 5

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If `sec theta = x ,"write the value of tan"  theta`.


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


If sec θ = `25/7`, then find the value of tan θ.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×