Advertisements
Advertisements
प्रश्न
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
उत्तर
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(bb(cos^2θ) + bb(sin^2θ))/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ...............[sin2θ + cos2θ = 1]
= `1/sinθ xx 1/bbcosθ`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
cosec4θ − cosec2θ = cot4θ + cot2θ
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
(1 – cos2 A) is equal to ______.