हिंदी

Show that, cotθ + tanθ = cosecθ × secθ Solution : L.H.S. = cotθ + tanθ = θθθθcosθsinθ+sinθcosθ = θθ□+□sinθ×cosθ = θθ1sinθ×cosθ ............... □ = θ1sinθ×1□ = cosecθ × secθ L.H.S. = R.H.S - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ

रिक्त स्थान भरें
योग

उत्तर

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(bb(cos^2θ) + bb(sin^2θ))/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ...............[sin2θ + cos2θ = 1]

= `1/sinθ xx 1/bbcosθ`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

संबंधित प्रश्न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


cosec4θ − cosec2θ = cot4θ + cot2θ


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


Write the value of sin A cos (90° − A) + cos A sin (90° − A).


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×