Advertisements
Advertisements
प्रश्न
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
उत्तर
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(bb(cos^2θ) + bb(sin^2θ))/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ...............[sin2θ + cos2θ = 1]
= `1/sinθ xx 1/bbcosθ`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
(i)` (1-cos^2 theta )cosec^2theta = 1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Simplify : 2 sin30 + 3 tan45.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α