Advertisements
Advertisements
प्रश्न
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
उत्तर
L.H.S = `1 + (cot^2 alpha)/(1 + "cosec" alpha)`
= `1 + ((cos^2 alpha)/(sin^2 alpha))/((1 + 1)/(sin alpha))` ...`[∵ cot theta = (cos theta)/(sin theta) "and" "cosec" theta = 1/sin theta]`
= `1 + (cos^2 alpha)/(sinalpha (1 + sin alpha))`
= `(sin alpha(1 + sin alpha) + cos^2 alpha)/(sin alpha(1 + sin alpha))`
= `(sin alpha + (sin^2 alpha + cos^2 alpha))/(sin alpha(1 + sin alpha)` ...[∵ sin2θ + cos2θ = 1]
= `((sin alpha + 1))/(sin alpha(sin alpha + 1))`
= `1/sinalpha` ...`[∵ "cosec" theta = 1/sin theta]`
= cosec α
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
What is the value of (1 + cot2 θ) sin2 θ?
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If tan θ × A = sin θ, then A = ?
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`