Advertisements
Advertisements
प्रश्न
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
उत्तर
`3 cot^2 theta - 3 cosec ^2 theta`
= `3 ( cot^2 theta - cosec ^2 theta )`
= 3(-1)
=-3
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Choose the correct alternative:
cos θ. sec θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that cot2θ × sec2θ = cot2θ + 1
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.