Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
उत्तर
In the given question, we need to prove
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Now using `sec theta = 1/ cos theta` and `cosec theta = 1/sin theta` in LHS we get
LHS =`(1/((1/cos^2 theta) - cos^2 theta) + 1/((1/sin^2 theta) - sin^2 theta)) sin^2 theta cos^2 theta`
`= (1/((1 - cos^4 theta)/cos^2 theta) + 1/((1 - sin^4 theta)/sin^2 theta)) sin^2 theta cos^2 theta`
`= ((cos^2 theta)/(1 - cos^4 theta) + sin^2 theta/(1 - sin^4 theta)) sin^2 theta cos^2 theta`
Further using the identity `a^2 - b^2 = (a + b)(a- b)` we get
LHS = `(cos^2 theta/((1 - cos^2 theta)(1 + cos^2 theta)) + sin^2 theta/((1 - sin^2 theta) (1 + sin^2 theta)))sin^2 theta cos^2 theta`
`= ((cos^2 theta)/(sin^2 theta(1 + cos^2 theta)) + sin^2 theta/(cos^2 theta(1 + sin^2 theta))) sin^2 theta cos^2 theta`
`= ((cos^2 theta(cos^2 theta(1 + sin^2 theta))+sin^2 theta(sin^2 theta(1 + cos^2 theta)))/(sin^2 theta cos^2 theta(1 + cos^2 theta)(1 +sin^2 theta))) sin^2 theta cos^2 theta`
`= ((cos^4 theta(1 + sin^2 theta) + sin^4 theta(1 + cos^2 theta))/((1 + cos^2 theta)(1 + sin^2 theta)))`
Further using the identity `sin^2 theta + cos^2 theta = 1` we get
LHS = `((cos^4 theta + cos^4 theta sin^2 theta + sin^4 theta + sin^4 theta cos^2 theta)/(1 + cos^2 theta + sin^2 theta + sin^2 theta cos^2 theta))`
`= (cos^4 theta + sin^4 theta + cos^2 theta sin^2 theta (cos^2 theta + sin^2 theta)) /(2 + sin^2 theta cos^2theta)`
`= ((cos^4 theta +sin^4 theta +cos^2 theta sin^2theta (1))/(2 + sin^2 theta cos^2 theta))`
Now, from the identity `a^2 + b^2 = (a + b)^2 - 2ab` we get
So,
LHS = `(((cos^2 theta + sin^2 theta)^2 - 2cos^2 theta sin^2 theta +cos^2 theta sin^2 theta)/(2 + sin^2 theta cos^2 theta))`
`= (((1)^2 - cos^2 theta sin^2 theta)/(22 +sin^2 theta cos^2 theta))`
`= ((1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta cos^2 theta))`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.