मराठी

Prove the Following Trigonometric Identities. (1/(Sec^2 Theta - Cos Theta) + 1/(Cosec^2 Theta - Sin^2 Theta)) Sin^2 Theta Cos^2 Theta = (1 - Sin^2 Theta Cos^2 Theta)/(2 + Sin^2 Theta + Cos^2 Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`

उत्तर

In the given question, we need to prove

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`

Now using `sec theta = 1/ cos theta` and `cosec theta = 1/sin theta` in LHS we get

LHS =`(1/((1/cos^2 theta) - cos^2 theta)  + 1/((1/sin^2 theta) - sin^2 theta)) sin^2 theta cos^2 theta`

`= (1/((1 - cos^4 theta)/cos^2 theta) + 1/((1 - sin^4 theta)/sin^2 theta)) sin^2 theta cos^2 theta`

`= ((cos^2 theta)/(1 - cos^4 theta) + sin^2 theta/(1 - sin^4 theta)) sin^2 theta cos^2 theta`

Further using the identity `a^2 - b^2 = (a + b)(a- b)` we get

LHS = `(cos^2 theta/((1 - cos^2 theta)(1 + cos^2 theta)) + sin^2 theta/((1 - sin^2 theta) (1 + sin^2 theta)))sin^2 theta cos^2 theta`

`= ((cos^2 theta)/(sin^2 theta(1 + cos^2 theta)) + sin^2 theta/(cos^2 theta(1 + sin^2 theta))) sin^2 theta cos^2 theta`

`= ((cos^2 theta(cos^2 theta(1 + sin^2 theta))+sin^2 theta(sin^2 theta(1 + cos^2 theta)))/(sin^2 theta cos^2 theta(1 + cos^2 theta)(1  +sin^2 theta))) sin^2 theta cos^2 theta`

`= ((cos^4 theta(1 + sin^2 theta) + sin^4 theta(1 + cos^2 theta))/((1 + cos^2 theta)(1 + sin^2 theta)))`

Further using the identity `sin^2 theta + cos^2 theta = 1` we get

LHS = `((cos^4 theta + cos^4 theta sin^2 theta + sin^4 theta + sin^4 theta cos^2 theta)/(1 + cos^2 theta + sin^2 theta + sin^2 theta cos^2 theta))`

`= (cos^4 theta + sin^4 theta + cos^2 theta sin^2 theta (cos^2 theta + sin^2 theta)) /(2 + sin^2 theta cos^2theta)`

`= ((cos^4 theta +sin^4 theta +cos^2 theta sin^2theta (1))/(2 + sin^2 theta cos^2 theta))`

Now, from the identity `a^2 + b^2 = (a + b)^2 - 2ab` we get

So,

LHS  = `(((cos^2 theta + sin^2 theta)^2  - 2cos^2 theta sin^2 theta +cos^2 theta sin^2 theta)/(2 + sin^2 theta cos^2 theta))`

`= (((1)^2 - cos^2 theta sin^2 theta)/(22 +sin^2 theta cos^2 theta))`

`= ((1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta cos^2 theta))`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 57 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×