Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
उत्तर
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
= L.H.S.
= `(sec"A"-1)/(sec"A"+1)`
= `(1/cosA-1)/(1/cosA+1)`
=`(1-cosA)/(1+cosA)`
Multiplied by 1 + cosA
=`(1-cos^2A)/(1+cosA)^2`
=`(sin^2A)/(1+cosA)^2`
=`((sinA)/(1+cosA))^2`
= R.H.S
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
(sec θ + tan θ) . (sec θ – tan θ) = ?