Advertisements
Advertisements
प्रश्न
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
उत्तर
We have,
LHS = `(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
= `cos(90° - 20°)/(sin 20°) + cos(90° - 31°)/(sin 31°) - 8 xx (1/2)^2`
= `(sin 20°)/(sin 20°) + (sin 31°) /(sin 31°) - 8 xx 1/4`
= 1 + 1 - 2
= 2 -2
= 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Choose the correct alternative:
tan (90 – θ) = ?
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1