Advertisements
Advertisements
प्रश्न
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
उत्तर
`cos theta/(1 + sin theta)` = sec θ – tan θ
R.H.S. = sec θ – tan θ
= `1/cos theta - sin theta/cos theta`
= `(1 - sin theta)/costheta`
= `(1 - sin theta)/cos theta xx (1 + sin theta)/(1 + sin theta)`
= `(1 - sin^2 theta)/(cos theta(1 + sin theta)`
= `cos^2 theta/(cos theta(1 + sin theta))`
= `costheta/(1 + sintheta)`
L.H.S. = R.H.S.
∴ `cos theta/(1 + sin theta)` = sec θ – tan θ
Aliter:
L.H.S. = `cos theta/(1 - sin theta)` ...[conjugate (1 – sin θ)]
= `(cos theta(1 + sin theta))/((1 - sin theta)(1 + sin theta))`
= `(cos theta(1 + sin theta))/((1 - sin^2 theta))`
= `(cos theta (1 + sin theta))/(cos^2 theta)`
= `(1 + sin theta)/costheta`
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If tanθ `= 3/4` then find the value of secθ.
What is the value of (1 − cos2 θ) cosec2 θ?
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.