Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
उत्तर
We need to prove `(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Using identity `a^2 - b^2 = (a + b)(a - b)` we get
`(cosec A)/(cosec A - 1) = (cosec A)/(cosec A + 1) = (cosec A(cosec A + 1)+cosec A(cosec A - 1))/(cosec^2 A - 1)`
`= (cosec A (cosec A +1 + cosec A - 1))/(cosec^2 A - 1)`
Further, using the property `1 + cot62 theta = cosec^2 theta` we get
So
`(cosec A (cosec A + 1 + cosec A - 1))/(cosec^2 A- 1) = (cosec A(2 cosec A))/cot^2 A`
`= (2cosec^2 A)/cot^2 A`
`= (2)(1/sin^2 A)((cos^2 A)/(sin^2 A))`
`= 2(1/cos^2 A)`
`= 2 sec^2 A`
Hence proved.
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If tan θ × A = sin θ, then A = ?
Prove that cot2θ × sec2θ = cot2θ + 1
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ