मराठी

Prove the Following Trigonometric Identities. `(Cosec A)/(Cosec A - 1) + (Cosec A)/(Cosec a = 1) = 2 Sec^2 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`

उत्तर

We need to prove  `(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`

Using identity `a^2 - b^2 = (a + b)(a - b)` we get

`(cosec A)/(cosec A - 1) = (cosec A)/(cosec A + 1) = (cosec A(cosec A + 1)+cosec A(cosec A - 1))/(cosec^2 A - 1)`

`= (cosec A (cosec A +1 + cosec A - 1))/(cosec^2 A - 1)`

Further, using the property  `1 + cot62 theta = cosec^2 theta` we get

So

`(cosec A (cosec A + 1 + cosec A - 1))/(cosec^2 A- 1) =  (cosec A(2 cosec A))/cot^2 A`       

`= (2cosec^2 A)/cot^2 A`

`= (2)(1/sin^2 A)((cos^2 A)/(sin^2 A))`

`= 2(1/cos^2 A)`

`= 2 sec^2 A`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 43 | पृष्ठ ४५

संबंधित प्रश्‍न

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


If tan θ × A = sin θ, then A = ?


Prove that cot2θ × sec2θ = cot2θ + 1


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×