Advertisements
Advertisements
प्रश्न
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
उत्तर
`(p^2 - 1)/(p^2 + 1)`
= `((secA + tanA)^2 - 1)/((secA + tanA)^2 + 1)`
= `(sec^2A + tan^2A + 2tanA secA - 1)/(sec^2A + tan^2A + 2tanA secA + 1)`
= `(tan^2A + tan^2A + 2tanA secA)/(sec^2A + sec^2A + 2tanA secA)`
= `(2tan^2A + 2tanA secA)/(2sec^2A + 2tanA secA)`
= `(2tanA(tanA + secA))/(2secA(tanA + secA)`
= sin A
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Define an identity.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A