Advertisements
Advertisements
Question
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
Solution
`(p^2 - 1)/(p^2 + 1)`
= `((secA + tanA)^2 - 1)/((secA + tanA)^2 + 1)`
= `(sec^2A + tan^2A + 2tanA secA - 1)/(sec^2A + tan^2A + 2tanA secA + 1)`
= `(tan^2A + tan^2A + 2tanA secA)/(sec^2A + sec^2A + 2tanA secA)`
= `(2tan^2A + 2tanA secA)/(2sec^2A + 2tanA secA)`
= `(2tanA(tanA + secA))/(2secA(tanA + secA)`
= sin A
APPEARS IN
RELATED QUESTIONS
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`