Advertisements
Advertisements
Question
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Solution
`cosA/(1+sinA)+tanA`
= `cosA/(1 + sinA) + sinA/cosA`
= `(cos^2A + sinA + sin^2A)/((1 + sinA)cosA)`
= `(1 + sinA)/((1 + sinA)cosA)`
= `(cos^3A + cosA sinA - sin^2A)/(cos^2A - sinAcosA)`
= `1/cosA`
= sec A
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1