Advertisements
Advertisements
Question
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Solution
LHS = secA(1 + sinA)(secA - tanA)
= `1/cosA(1 + sinA)(1/cosA - sinA/cosA)`
= `((1 + sinA))/cosA((1-sinA)/cosA) = (1-sin^2A)/cos^2A`
= `(cos^2A/cos^2A) = 1` = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`