Advertisements
Advertisements
Question
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Solution
LHS = cosecθ(1 + cosθ)(cosecθ - cotθ)
= `1/sinθ(1 + cosθ)(1/sinθ - cosθ/sinθ)`
= `((1 + cosθ))/sinθ ((1-cosθ)/sinθ)`
= `(1 - cos^2θ)/sin^2θ = sin^2θ/sin^2θ = 1 = RHS`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
What is the value of (1 + cot2 θ) sin2 θ?
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.