Advertisements
Advertisements
Question
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Solution
LHS = `sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1))`
= `(sqrt( secθ - 1) sqrt( secθ - 1) + sqrt( secθ + 1)sqrt( secθ + 1))/(sqrt(secθ - 1)sqrt(secθ + 1))`
= `((sqrt( secθ - 1))^2 + (sqrt( secθ + 1))^2)/(sqrt(secθ - 1)sqrt(secθ + 1))`
= `(secθ - 1 + secθ + 1)/(sqrt(sec^2 - 1))`
= `(2secθ)/sqrt(tan^2θ)`
= `(2secθ)/(tanθ)`
= `(2 1/cosθ)/(sinθ/cosθ)`
= `(2 1/sinθ)`
= 2 cosecθ.
APPEARS IN
RELATED QUESTIONS
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
What is the value of 9cot2 θ − 9cosec2 θ?
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.