English

Prove That: Sqrt(( Secθ - 1)/(Secθ + 1)) + Sqrt((Secθ + 1)/(Secθ - 1)) = 2cosecθ - Mathematics

Advertisements
Advertisements

Question

Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`

Sum

Solution

LHS = `sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1))` 

= `(sqrt( secθ - 1) sqrt( secθ - 1) + sqrt( secθ + 1)sqrt( secθ + 1))/(sqrt(secθ - 1)sqrt(secθ + 1))`

= `((sqrt( secθ - 1))^2 + (sqrt( secθ + 1))^2)/(sqrt(secθ - 1)sqrt(secθ + 1))`

= `(secθ - 1 + secθ + 1)/(sqrt(sec^2 - 1))`

= `(2secθ)/sqrt(tan^2θ)`

= `(2secθ)/(tanθ)`

= `(2 1/cosθ)/(sinθ/cosθ)`

= `(2 1/sinθ)`

= 2 cosecθ.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 30/4/3

RELATED QUESTIONS

If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


What is the value of 9cot2 θ − 9cosec2 θ? 


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×