Advertisements
Advertisements
Question
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Solution
LHS= `(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta)`
=` ((1+ cos theta )- (1-cos^2 theta))/(sin theta(1+ cos theta))`
=`(cos theta + cos^2 theta)/( sin theta ( 1+ cos theta))`
=`(cos theta ( 1+ cos theta ))/ ( sin theta ( 1+ cos theta))`
=`cos theta/ sin theta`
= cot 𝜃
= RHS
Hence, L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If cos A + cos2 A = 1, then sin2 A + sin4 A =
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that sin4A – cos4A = 1 – 2cos2A