English

RS Aggarwal solutions for Mathematics [English] Class 10 chapter 8 - Trigonometric Identities [Latest edition]

Advertisements

Chapters

RS Aggarwal solutions for Mathematics [English] Class 10 chapter 8 - Trigonometric Identities - Shaalaa.com
Advertisements

Solutions for Chapter 8: Trigonometric Identities

Below listed, you can find solutions for Chapter 8 of CBSE RS Aggarwal for Mathematics [English] Class 10.


Exercises 1Exercises 2Exercises 3
Exercises 1

RS Aggarwal solutions for Mathematics [English] Class 10 8 Trigonometric Identities Exercises 1

Exercises 1 | Q 1.1

(i)` (1-cos^2 theta )cosec^2theta = 1`

Exercises 1 | Q 1.2

`(1 + cot^2 theta ) sin^2 theta =1`

Exercises 1 | Q 2.1

`(sec^2 theta-1) cot ^2 theta=1`

Exercises 1 | Q 2.2

`(sec^2 theta -1)(cosec^2 theta - 1)=1`

Exercises 1 | Q 2.3

`(1-cos^2theta) sec^2 theta = tan^2 theta`

Exercises 1 | Q 3.1

`sin^2 theta + 1/((1+tan^2 theta))=1`

Exercises 1 | Q 3.2

`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`

Exercises 1 | Q 4.1

`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`

Exercises 1 | Q 4.2

`cosec theta (1+costheta)(cosectheta - cot theta )=1`

Exercises 1 | Q 5.1

`cot^2 theta - 1/(sin^2 theta ) = -1`a

Exercises 1 | Q 5.2

` tan^2 theta - 1/( cos^2 theta )=-1`

Exercises 1 | Q 5.3

`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     

Exercises 1 | Q 6

`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`

Exercises 1 | Q 7.1

`sec theta (1- sin theta )( sec theta + tan theta )=1`

Exercises 1 | Q 7.2

`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`

Exercises 1 | Q 8.1

`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`

Exercises 1 | Q 8.2

`1+(tan^2 theta)/((1+ sec theta))= sec theta`

Exercises 1 | Q 9

`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`

Exercises 1 | Q 10

`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`

Exercises 1 | Q 11

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.

  • 1

  • `3/4`

  • `1/2`

  • `1/4`

Exercises 1 | Q 12

`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`

Exercises 1 | Q 13

`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`

Exercises 1 | Q 14

`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`

Exercises 1 | Q 15

`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`

Exercises 1 | Q 16

`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`

Exercises 1 | Q 17.1

`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`

Exercises 1 | Q 17.2

`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`

Exercises 1 | Q 17.3

cosec4θ − cosec2θ = cot4θ + cot2θ

Exercises 1 | Q 18.1

`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`

Exercises 1 | Q 18.2

`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`

Exercises 1 | Q 19.1

`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`

Exercises 1 | Q 19.2

`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `

Exercises 1 | Q 20.1

`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`

Exercises 1 | Q 20.2

`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`

Exercises 1 | Q 21.1

`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`

Exercises 1 | Q 21.2

`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`

Exercises 1 | Q 21.3

`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 

Exercises 1 | Q 22

`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`

Exercises 1 | Q 23

`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`

Exercises 1 | Q 24.1

` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`

Exercises 1 | Q 24.2

` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`

Exercises 1 | Q 25

`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`

Exercises 1 | Q 26.1

`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`

Exercises 1 | Q 26.2

`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `

Exercises 1 | Q 27.1

`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`

Exercises 1 | Q 27.2

`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`

Exercises 1 | Q 28

`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`

Exercises 1 | Q 29

`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`

Exercises 1 | Q 30

`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`

Exercises 1 | Q 31

`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`

Exercises 1 | Q 32

`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`

Exercises 1 | Q 33

`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`

Exercises 1 | Q 34

`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 

Exercises 1 | Q 35

`(tan A + tanB )/(cot A + cot B) = tan A tan B`

Exercises 1 | Q 36.1

Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`

Exercises 1 | Q 36.2

Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`

Exercises 1 | Q 36.3

Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`

Exercises 1 | Q 37

Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`

Exercises 2

RS Aggarwal solutions for Mathematics [English] Class 10 8 Trigonometric Identities Exercises 2

Exercises 2 | Q 1

If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`

Exercises 2 | Q 2

If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`

Exercises 2 | Q 3

If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`

Exercises 2 | Q 4

If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1

Exercises 2 | Q 5

If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.

Exercises 2 | Q 6

If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`

Exercises 2 | Q 7

If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`

Exercises 2 | Q 8

If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`

Exercises 2 | Q 9

If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`

Exercises 2 | Q 10

If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`

Exercises 2 | Q 11

If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.

Exercises 2 | Q 12

If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`

Exercises 2 | Q 13

If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`

Exercises 2 | Q 14

If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`

Exercises 2 | Q 15

If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.

Exercises 3

RS Aggarwal solutions for Mathematics [English] Class 10 8 Trigonometric Identities Exercises 3

Exercises 3 | Q 1

Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`

Exercises 3 | Q 2

Write the value of `(1 - cos^2 theta ) cosec^2 theta`.

Exercises 3 | Q 3

Write the value of `(1 + tan^2 theta ) cos^2 theta`. 

Exercises 3 | Q 4

Write the value of `(1 + cot^2 theta ) sin^2 theta`. 

Exercises 3 | Q 5

Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 

Exercises 3 | Q 6

Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 

Exercises 3 | Q 7

Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 

Exercises 3 | Q 8

Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 

Exercises 3 | Q 9

Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`

Exercises 3 | Q 10

Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`

Exercises 3 | Q 11

Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`

Exercises 3 | Q 12

Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`

Exercises 3 | Q 13

Write the value of `3 cot^2 theta - 3 cosec^2 theta.`

Exercises 3 | Q 14

Write the value of `4 tan^2 theta  - 4/ cos^2 theta`

Exercises 3 | Q 15

Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`

Exercises 3 | Q 16

If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`

Exercises 3 | Q 17

If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`

Exercises 3 | Q 18

If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`

Exercises 3 | Q 19

If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`

Exercises 3 | Q 20

If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`

Exercises 3 | Q 21

If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`

Exercises 3 | Q 22

If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`

Exercises 3 | Q 23

If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`

Exercises 3 | Q 24

If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?

Exercises 3 | Q 25

If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.

Exercises 3 | Q 26

If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .

Exercises 3 | Q 27

Write the value of tan10° tan 20° tan 70° tan 80° .

Exercises 3 | Q 28

Write the value of tan1° tan 2°   ........ tan 89° .

Exercises 3 | Q 29

Write the value of cos1° cos 2°........cos180° .

Exercises 3 | Q 30

If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.

Exercises 3 | Q 31

`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .

Exercises 3 | Q 32

Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`

Exercises 3 | Q 33

Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 

Exercises 3 | Q 34

If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`

Exercises 3 | Q 35

If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`

Exercises 3 | Q 36

If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`

Exercises 3 | Q 37

If `sec theta + tan theta = x,"  find the value of " sec theta`

Exercises 3 | Q 38

Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`

Exercises 3 | Q 39

If `sin theta = x , " write the value of cot "theta .`

Exercises 3 | Q 40

If `sec theta = x ,"write the value of tan"  theta`.

Solutions for 8: Trigonometric Identities

Exercises 1Exercises 2Exercises 3
RS Aggarwal solutions for Mathematics [English] Class 10 chapter 8 - Trigonometric Identities - Shaalaa.com

RS Aggarwal solutions for Mathematics [English] Class 10 chapter 8 - Trigonometric Identities

Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RS Aggarwal solutions for Mathematics Mathematics [English] Class 10 CBSE 8 (Trigonometric Identities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RS Aggarwal textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 10 chapter 8 Trigonometric Identities are Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Trigonometric Ratios of Complementary Angles, Trigonometric Identities.

Using RS Aggarwal Mathematics [English] Class 10 solutions Trigonometric Identities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RS Aggarwal Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 10 students prefer RS Aggarwal Textbook Solutions to score more in exams.

Get the free view of Chapter 8, Trigonometric Identities Mathematics [English] Class 10 additional questions for Mathematics Mathematics [English] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×