Advertisements
Advertisements
Question
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Solution
`sin theta cos theta (90° - theta ) + cos theta sin ( 90° - theta)`
= ` sin theta sin theta + cos theta cos theta `
=` sin^2 theta + cos^2 theta `
= 1
APPEARS IN
RELATED QUESTIONS
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of cosec2 (90° − θ) − tan2 θ.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Choose the correct alternative:
1 + tan2 θ = ?
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ