Advertisements
Advertisements
Question
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Solution
Given : `cos A + cos^2 A = 1`
we have to prove `sin^2 A + sin^4 A = 1`
Now
`cos A + cos^2 A = 1`
`=>cos A = 1 - cos^2 A`
`=> cos A = sin^2 A`
`=> sin^2 A = cos A`
Therefore, we have
`sin^2 A + sin^4 A = cos A + (cos A)^2`
`= cos A + cos^`2 A`
= 1
Hence proved.
APPEARS IN
RELATED QUESTIONS
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.