English

Prove the Following Trigonometric Identities. If Cos a + Cos2 A = 1, Prove that Sin2 A + Sin4 A = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1

Solution

Given : `cos A + cos^2 A = 1`

we have to prove `sin^2 A + sin^4 A = 1`

Now

`cos A + cos^2 A = 1`

`=>cos A = 1 - cos^2 A`

`=> cos A = sin^2 A`

`=> sin^2 A = cos A`

Therefore, we have

`sin^2 A + sin^4 A = cos A + (cos A)^2`

`= cos A + cos^`2 A`

= 1

Hence proved.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 82 | Page 47

RELATED QUESTIONS

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×