Advertisements
Advertisements
Question
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Solution
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
`(1 + cosA)/sinA + sinA/(1 + cosA)`
= `((1 + cosA)^2 + sin^2A)/(sinA(1 + cosA))`
= `(1 + 2cosA + cos^2A + sin^2A)/(sinA(1 + cosA))`
= `(2 + 2cosA)/(sinA(1 + cosA))`
= `(2(1 + cosA))/(sinA(1 + cosA)` [`sin^2A + cos^2A = 1`]
= 2 cosec A
APPEARS IN
RELATED QUESTIONS
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ