Advertisements
Advertisements
Question
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Solution
L.H.S. = (1 + cot A – cosec A)(1 + tan A + sec A)
= `(1 + cosA/sinA - 1/sinA)(1 + sinA/cosA + 1/cosA)`
= `((sinA + cosA - 1)/sinA)((cosA + sinA + 1)/cosA)`
= `((sinA + cosA - 1)(sinA + cosA + 1))/(sinAcosA)`
= `((sinA + cosA)^2 - (1)^2)/(sinAcosA)`
= `(sin^2A + cos^2A + 2sinAcosA - 1)/(sinAcosA)`
= `(1 + 2sinAcosA - 1)/(sinAcosA)`
= `(2sinAcosA)/(sinAcosA)`
= 2 = R.H.S.
APPEARS IN
RELATED QUESTIONS
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If tanθ `= 3/4` then find the value of secθ.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that `sec"A"/(tan "A" + cot "A")` = sin A