Advertisements
Advertisements
Question
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Solution
LHS = `(tanθ + secθ - 1)/(tanθ - secθ + 1) `
= `(tanθ + secθ - {sec^2θ - tan^2θ})/(1 + tanθ -secθ)`
= `(tanθ + secθ - {(secθ + tanθ)(secθ - tanθ)})/(1 + tanθ - secθ)`
= `([tanθ + secθ]{1 - (secθ - tanθ)})/[[1 + tanθ - secθ]` = `([tanθ + secθ][1 + tanθ - secθ])/[[1 + tanθ - secθ]]`
= `[tanθ + secθ] = (1 + sinθ)/cosθ` = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2