Advertisements
Advertisements
Question
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Solution
LHS = `cosA/(1 + sinA)`
RHS = secA - tanA
= `1/cosA - sinA/cosA = (1 - sinA)/cosA`
= `(1 - sinA)/cosA((1 + sinA)/(1 + sinA)) = ((1 - sin^2A)/(cosA(1 + sinA)))`
= `cos^2A/(cosA(1 + sinA)) = cosA/((1 + sinA) ` = LHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If `sin theta = x , " write the value of cot "theta .`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`