Advertisements
Advertisements
Question
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Solution
4 `tan^2 theta - 4 / cos^2 theta`
=` 4 tan^2 theta - 4 sec^2 theta`
=`4 (tan^2 theta - sec^2 theta )`
=4(-1)
= -4
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
If sin θ = `1/2`, then find the value of θ.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.