Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Solution
We have to prove `cos^2 theta/sin theta - cosec theta + sin theta = 0`
We know that `sin^2 theta + cos^2 theta = 1`
So,
`cos^2 theta/sin theta - cosec theta + sin theta = (cos^2 theta/sin theta - cosec theta) = sin theta`
`= (cos^2 theta/sin theta - 1/sin theta) = sin theta`
`= ((cos^2 theta - 1)/sin theta) + sin theta`
`= ((-sin^2 theta )/sin theta) + sin theta`
`= - sin theta = sin theta`
= 0
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
What is the value of 9cot2 θ − 9cosec2 θ?
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If 1 – cos2θ = `1/4`, then θ = ?