English

Prove the Following Trigonometric Identities. `(Cos^2 Theta)/Sin Theta - Cosec Theta + Sin Theta = 0` - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`

Solution

We have to prove `cos^2 theta/sin theta - cosec theta + sin theta = 0`

We know that `sin^2 theta  + cos^2 theta = 1`

So,

`cos^2 theta/sin theta -  cosec theta +  sin theta = (cos^2 theta/sin theta -  cosec theta) =  sin theta`  

`= (cos^2 theta/sin theta -  1/sin theta) = sin theta`

`= ((cos^2 theta - 1)/sin theta) + sin theta`

`= ((-sin^2 theta )/sin theta) + sin theta`

`= - sin theta = sin theta`

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 24 | Page 44

RELATED QUESTIONS

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


What is the value of 9cot2 θ − 9cosec2 θ? 


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If 1 – cos2θ = `1/4`, then θ = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×