English

Prove the Following Trigonometric Identities. Cosec Theta Sqrt(1 - Cos^2 Theta) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`

Solution

We know that `sin^2 theta + cos^2 theta = 1`

So,

`cosec theta sqrt(1 - cos^2 theta) = cosec theta sqrt (sin^2 theta)`

`= cosec theta sin theta`

`1/ sin theta xx sin theta`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 4 | Page 43

RELATED QUESTIONS

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Find A if tan 2A = cot (A-24°).


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Choose the correct alternative:

1 + cot2θ = ? 


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×