Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Solution
We know that `sin^2 theta + cos^2 theta = 1`
So,
`cosec theta sqrt(1 - cos^2 theta) = cosec theta sqrt (sin^2 theta)`
`= cosec theta sin theta`
`1/ sin theta xx sin theta`
= 1
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Find A if tan 2A = cot (A-24°).
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Choose the correct alternative:
1 + cot2θ = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.