Advertisements
Advertisements
Question
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Solution
We know that `sin^2 theta + cos^2 theta = 1`
So
`tan^2 theta cos^2 theta = (tan theta xx cos theta)^2`
`= (sin theta/cos theta xx cos theta)^2`
`= sin^2 theta`
`= 1 - cos^2 theta`
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove that `cosA/(1+sinA) + tan A = secA`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Choose the correct alternative:
1 + cot2θ = ?
If tan θ = `13/12`, then cot θ = ?
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ