Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
उत्तर
We know that `sin^2 theta + cos^2 theta = 1`
So
`tan^2 theta cos^2 theta = (tan theta xx cos theta)^2`
`= (sin theta/cos theta xx cos theta)^2`
`= sin^2 theta`
`= 1 - cos^2 theta`
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
\[\frac{x^2 - 1}{2x}\] is equal to
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.