मराठी

Prove that (Sinθ - Cosθ + 1)/(Sinθ + Cosθ - 1) = 1/(Secθ - Tanθ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`

बेरीज

उत्तर

LHS = `(sinθ - cosθ + 1)/(sinθ + cosθ - 1)`

LHS = `((sinθ - cosθ + 1)/(sinθ + cosθ - 1)) xx ((sinθ + cosθ + 1)/(sinθ + cosθ + 1))`

LHS = `((sinθ + 1 - cosθ )/(sinθ + cosθ - 1)) xx ((sinθ + 1 + cosθ)/(sinθ + cosθ + 1))`

LHS = `((sinθ + 1)^2 - cos^2θ)/((sinθ + cosθ)^2 - 1^2)`

LHS = `(sin^2θ + 1 + 2sinθ - cos^2θ)/(sin^2θ + cos^2θ + 2sinθcosθ - 1)`
 
LHS = `(1 - cos^2θ + 1 + 2sinθ - cos^2θ)/(1 + 2sinθcosθ - 1)   ...(sin^2θ + cos^2θ = 1)`
 
LHS = `(2 - 2cos^2θ + 2sinθ)/( 2sinθcosθ)`
 
LHS = `[cancel2(1 - cos^2θ + sinθ)]/[cancel2(sinθcosθ)]`
 
LHS = `( 1 - cos^2θ + sinθ)/(sinθcosθ)`
 
LHS = `(sin^2θ + sinθ)/( sinθcosθ )`
 
LHS = `(sinθ + 1)/cosθ`
 
LHS = `1/cosθ + sinθ/cosθ`
 
LHS = secθ + tanθ
 
LHS = `( secθ + tanθ ) xx (secθ - tanθ)/(secθ - tanθ)`
 
LHS = `(sec^2θ - tan^2θ)/(secθ - tanθ)`
 
LHS =`1/(secθ- tanθ)      ...[∴ sec^2θ − tan^2θ = 1]`
 
RHS = `1/(secθ- tanθ)`
 
LHS = RHS
 
Hence, it proved.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

संबंधित प्रश्‍न

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


`(1 + cot^2 theta ) sin^2 theta =1`


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


Write the value of tan1° tan 2°   ........ tan 89° .


sec4 A − sec2 A is equal to


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Choose the correct alternative:

1 + tan2 θ = ?


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Choose the correct alternative:

1 + cot2θ = ? 


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If 2sin2β − cos2β = 2, then β is ______.


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×