Advertisements
Advertisements
प्रश्न
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
उत्तर
LHS = `((sinθ - cosθ + 1)/(sinθ + cosθ - 1)) xx ((sinθ + cosθ + 1)/(sinθ + cosθ + 1))`
LHS = `((sinθ + 1 - cosθ )/(sinθ + cosθ - 1)) xx ((sinθ + 1 + cosθ)/(sinθ + cosθ + 1))`
LHS = `((sinθ + 1)^2 - cos^2θ)/((sinθ + cosθ)^2 - 1^2)`
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`(1 + cot^2 theta ) sin^2 theta =1`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Write the value of tan1° tan 2° ........ tan 89° .
sec4 A − sec2 A is equal to
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Choose the correct alternative:
1 + tan2 θ = ?
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Choose the correct alternative:
1 + cot2θ = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If 2sin2β − cos2β = 2, then β is ______.
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`