मराठी

Prove the Following Trigonometric Identities. (1 + Cot A − Cosec A) (1 + Tan A + Sec A) = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2

उत्तर

We have to prove  (1 + cot A − cosec A) (1 + tan A + sec A) = 2

We know that, `sin^2 A + cos^2 A = 1`

So.

`(1 + cot A − cosec A) (1 + tan A + sec A) = (1 + cosA/sin A - 1/ sinA) (1 + sin A/cos A + 1/cos A)` 

`= ((sin A + cos A - 1)/sin A)((cos A + sin A + 1)/cos A)`

`= ((sin A + cos A -1)(sin A + cos A  + 1))/(sin A cos A)`

`= ({(sin A + cos A) - 1}{(sin A + cos A) + 1})/(sin A cos A)`

`= ((sin A + cos A)^2 -1)/(sin A cos A)`

`= (sin^2 A + 2 sin A cos A + cos^2 A - 1)/(sin A cos A)`

`= ((sin^2 A + cos^2 A) + 2 sin A cos A - 1)/(sin A cos A)`

`= (1 + 2 sin A cos A  -1)/(sin A cos A)`

`= (2 sin A cos A)/(sin A cos A)`

= 2

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 60 | पृष्ठ ४६

संबंधित प्रश्‍न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


If sin A = `1/2`, then the value of sec A is ______.


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×