Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
उत्तर
We have to prove (1 + cot A − cosec A) (1 + tan A + sec A) = 2
We know that, `sin^2 A + cos^2 A = 1`
So.
`(1 + cot A − cosec A) (1 + tan A + sec A) = (1 + cosA/sin A - 1/ sinA) (1 + sin A/cos A + 1/cos A)`
`= ((sin A + cos A - 1)/sin A)((cos A + sin A + 1)/cos A)`
`= ((sin A + cos A -1)(sin A + cos A + 1))/(sin A cos A)`
`= ({(sin A + cos A) - 1}{(sin A + cos A) + 1})/(sin A cos A)`
`= ((sin A + cos A)^2 -1)/(sin A cos A)`
`= (sin^2 A + 2 sin A cos A + cos^2 A - 1)/(sin A cos A)`
`= ((sin^2 A + cos^2 A) + 2 sin A cos A - 1)/(sin A cos A)`
`= (1 + 2 sin A cos A -1)/(sin A cos A)`
`= (2 sin A cos A)/(sin A cos A)`
= 2
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If sin A = `1/2`, then the value of sec A is ______.
(1 + sin A)(1 – sin A) is equal to ______.