मराठी

Prove the Following Trigonometric Identities. (Sec A + Tan A − 1) (Sec A − Tan A + 1) = 2 Tan A - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A

उत्तर

We have to prove (sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A

We know that `sec^2 theta A - tan^2 theta A = 1`

So, we have

(sec A + tan A - 1)(sec A - tan A +  1) = {sec A + (tan A - 1)}{sec A - (tan A - 1)}

`= sec^2 A - (tan A - 1)^2`

`= sec^2 A - (tan^2 A - 2 tan A + 1)`

`= (sec^2 A - tan^2 A) + 2 tan A - 1`

So we have

(sec A + tan A  - 1)(sec A - tan A + 1) = 1 +  tan A - 1

= 2 tan A

Hence proved.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 59 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


Define an identity.


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Choose the correct alternative:

cos 45° = ?


If 3 sin θ = 4 cos θ, then sec θ = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


If 2sin2θ – cos2θ = 2, then find the value of θ.


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×