Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
उत्तर
We have to prove (sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
We know that `sec^2 theta A - tan^2 theta A = 1`
So, we have
(sec A + tan A - 1)(sec A - tan A + 1) = {sec A + (tan A - 1)}{sec A - (tan A - 1)}
`= sec^2 A - (tan A - 1)^2`
`= sec^2 A - (tan^2 A - 2 tan A + 1)`
`= (sec^2 A - tan^2 A) + 2 tan A - 1`
So we have
(sec A + tan A - 1)(sec A - tan A + 1) = 1 + tan A - 1
= 2 tan A
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Define an identity.
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Choose the correct alternative:
cos 45° = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If 2sin2θ – cos2θ = 2, then find the value of θ.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.