Advertisements
Advertisements
प्रश्न
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
उत्तर
We have `m^2 + n^2 = [(a cos theta + b sin theta)^2 + ( a sin theta - b cos theta )^2 ]`
=` ( a^2 cos^2 theta + b^2 sin ^2 theta + 2 ab cos theta sin theta)`
+`(a^2 sin^2 theta + b^2 cos^2 theta -2ab cos theta sin theta)`
=`a^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta + b^2 vos^2 theta`
=`(a^2 cos^2 theta + b^2 sin^2 theta) + ( b^2 cos^2 theta + b^2 sin^2 theta )`
=`a^2 (cos^2 theta + sin^2 theta ) + b^2 ( cos^2 theta + sin^2 theta )`
=`a^2 + b^2 [∵ sin^2 + cos^2 = 1]`
Hence , `m^2 + n^2 = a^2 + b^2`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
What is the value of (1 + cot2 θ) sin2 θ?
cos4 A − sin4 A is equal to ______.
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Choose the correct alternative:
Which is not correct formula?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.