मराठी

If a Cos `Theta + B Sin Theta = M and a Sin Theta - B Cos Theta = N , "Prove that "( M^2 + N^2 ) = ( A^2 + B^2 )` - Mathematics

Advertisements
Advertisements

प्रश्न

If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`

उत्तर

We have `m^2 + n^2 = [(a  cos theta + b sin theta)^2 + ( a sin theta - b cos theta )^2 ]`

                               =` ( a^2 cos^2 theta + b^2 sin ^2 theta + 2 ab cos theta sin theta)`

                              +`(a^2 sin^2 theta + b^2 cos^2 theta -2ab cos theta sin theta)`

                            =`a^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta + b^2 vos^2 theta`

                            =`(a^2 cos^2 theta + b^2 sin^2 theta) + ( b^2 cos^2 theta + b^2 sin^2 theta )`

                            =`a^2 (cos^2 theta + sin^2 theta ) + b^2 ( cos^2 theta + sin^2 theta )`

                             =`a^2 + b^2    [∵ sin^2 + cos^2 = 1]`

  Hence , `m^2 + n^2 = a^2 + b^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 1

संबंधित प्रश्‍न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


What is the value of (1 + cot2 θ) sin2 θ?


cos4 A − sin4 A is equal to ______.


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


Choose the correct alternative:

Which is not correct formula?


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×