Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
Which is not correct formula?
पर्याय
1 + tan2θ = sec2θ
1 + sec2θ = tan2θ
cosec2θ − cot2θ = 1
sin2θ + cos2θ = 1
उत्तर
1 + sec2θ = tan2θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
tan θ × `sqrt(1 - sin^2 θ)` is equal to: