Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
उत्तर
Given:
`x = a cos^3 theta`
`=> x/a = cos^3 theta`
`x = b sin^3 theta`
`=> y/b = sin^3 theta`
We have to prove `(x/a)^(2/3) + (y/b)^(2/3) = 1`
We know that `sin^2 theta + cos^2 theta =1`
So we have
`(x/a)^(2/3) + (yb)^(2/3) = (cos^2 theta)^(2/3) + (sin^3 theta)^(2/3)`
`=> (x/a)^(2/3) + (y/b)^(2/3) = cos^2 theta + sin^2 theta`
`=> (x/a)^(2/3) + (y/b)^(2/3) = 1`
Hence proved
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
cosec4θ − cosec2θ = cot4θ + cot2θ
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0