मराठी

Prove the Following Trigonometric Identities. If X = a Cos^3 Theta, Y = B Sin^3 Theta` " Prove that " `(X/A)^(2/3) + (Y/B)^(2/3) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`

उत्तर

Given:

`x = a cos^3 theta`

`=> x/a = cos^3 theta`

`x = b sin^3 theta`

`=> y/b = sin^3 theta`

We have to prove `(x/a)^(2/3) + (y/b)^(2/3) = 1`

We know that `sin^2 theta + cos^2 theta =1`

So we have

`(x/a)^(2/3) + (yb)^(2/3) = (cos^2 theta)^(2/3) + (sin^3 theta)^(2/3)`

`=> (x/a)^(2/3) + (y/b)^(2/3) = cos^2 theta + sin^2 theta` 

`=> (x/a)^(2/3) + (y/b)^(2/3) = 1`

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 78 | पृष्ठ ४७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×