Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
उत्तर
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
`cot^2A - 2cotA cosecA + cosec^2x = (1 - cosA)/(1 + cosA)`
`(cos^2A)/(sin^2A) - (2cosA)/(sin^2A) + 1/(sin^2A) = (1 - cosA)/(1 + cosA)`
`(cos^2A - 2cosA + 1)/(sin^2A) = (1 - cosA)/(1 + cosA)`
`(cos^2A - 2cosA + 1)/(1 - cos^2A) = (1 - cosA)/(1 + cosA)`
`((1 - cosA)(1 - cosA))/((1 + cosA)(1 - cosA)) = (1 - cosA)/(1 + cosA)`
`(1 - cosA)/(1 + cosA) = (1 - cosA)/(1 + cosA)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Find A if tan 2A = cot (A-24°).
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ