Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
उत्तर
We need to prove `(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Here, we will first solve the LHS.
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta`, we get
`(sec A - tan A)/(sec A + tan A) = (1/cos A - sin A/cos A)/(1/cos A + sin A/cos A)`
`= ((1 - sin A)/cos A)/((1 + sin A)/cos A)`
`= (1 - sin A)/(1 + sin A)`
Further, multiplying both numerator and denominator by 1 + sin A we get
`(1 - sin A)/(1 + sin A) = ((1 - sin A)/(1 + sin A))((1 + sin A)/(1 = sin A))`
`= ((1 -sin A)(1 + sin A))/(1 + sin A)^2`
`= (1 s sin^2 A)/(1 + sin A)^2`
Now, using the property `cos^2 theta + sin^2 theta = 1`, we get
So,
`(1 - sin^2 A)/(1 + sin A)^2 = cos^2 A/(1 + sin A)^2` = RHS.
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
If tan θ × A = sin θ, then A = ?
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
(1 + sin A)(1 – sin A) is equal to ______.