मराठी

Prove the Following Trigonometric Identities. (Sec a - Tan A)/(Sec a + Tan A) = (Cos^2 A)/(1 + Sin A)^2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`

उत्तर

We need to prove  `(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`

Here, we will first solve the LHS.

Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta`, we get

`(sec A - tan A)/(sec A + tan A) = (1/cos A - sin A/cos A)/(1/cos A + sin A/cos A)`

`= ((1 - sin A)/cos A)/((1 + sin A)/cos A)`

`= (1 - sin A)/(1 + sin A)`

Further, multiplying both numerator and denominator by 1 + sin A we get

`(1 - sin A)/(1 + sin A) = ((1 - sin A)/(1 + sin A))((1 + sin A)/(1 =  sin A))`

`= ((1 -sin A)(1 + sin A))/(1 + sin A)^2`

`= (1 s sin^2 A)/(1 + sin A)^2`

Now, using the property `cos^2 theta + sin^2 theta = 1`, we get

So,

`(1 - sin^2 A)/(1 + sin A)^2  = cos^2 A/(1 + sin A)^2`  = RHS.

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 35 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following identities:

`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


If tan θ × A = sin θ, then A = ?


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×