Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
उत्तर
LHS = `sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1))`
= `(sqrt( secθ - 1) sqrt( secθ - 1) + sqrt( secθ + 1)sqrt( secθ + 1))/(sqrt(secθ - 1)sqrt(secθ + 1))`
= `((sqrt( secθ - 1))^2 + (sqrt( secθ + 1))^2)/(sqrt(secθ - 1)sqrt(secθ + 1))`
= `(secθ - 1 + secθ + 1)/(sqrt(sec^2 - 1))`
= `(2secθ)/sqrt(tan^2θ)`
= `(2secθ)/(tanθ)`
= `(2 1/cosθ)/(sinθ/cosθ)`
= `(2 1/sinθ)`
= 2 cosecθ.
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`(1 + cot^2 theta ) sin^2 theta =1`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.