मराठी

Prove That: Sqrt(( Secθ - 1)/(Secθ + 1)) + Sqrt((Secθ + 1)/(Secθ - 1)) = 2cosecθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`

बेरीज

उत्तर

LHS = `sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1))` 

= `(sqrt( secθ - 1) sqrt( secθ - 1) + sqrt( secθ + 1)sqrt( secθ + 1))/(sqrt(secθ - 1)sqrt(secθ + 1))`

= `((sqrt( secθ - 1))^2 + (sqrt( secθ + 1))^2)/(sqrt(secθ - 1)sqrt(secθ + 1))`

= `(secθ - 1 + secθ + 1)/(sqrt(sec^2 - 1))`

= `(2secθ)/sqrt(tan^2θ)`

= `(2secθ)/(tanθ)`

= `(2 1/cosθ)/(sinθ/cosθ)`

= `(2 1/sinθ)`

= 2 cosecθ.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 30/4/3

संबंधित प्रश्‍न

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


`(1 + cot^2 theta ) sin^2 theta =1`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×