Advertisements
Advertisements
प्रश्न
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
उत्तर
L.H.S. = (m2 + n2) cos2 B
= `(cos^2A/cos^2B + cos^2A/sin^2B)cos^2B`
= `((cos^2Asin^2B + cos^2Acos^2B)/(cos^2Bsin^2B))cos^2B`
= `((cos^2Asin^2B + cos^2Acos^2B)/sin^2B)`
= `(cos^2A(sin^2B + cos^2B))/sin^2B`
= `cos^2A/sin^2B`
= n2
Hence, (m2 + n2) cos2 B = n2.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ